A Relational Platform for Efficient Large-Scale Video Analytics

Yao Lu, Aakanksha Chowdhery, Srikanth Kandula

One surveillance camera for every 11 people in Britain, says CCTV survey

Photo: ALAMY

By David Barrett, Home Affairs Correspondent 6:30PM BST 10 Jul 2013

Follow < 2,866 followers

Print this article

Technology News » Politics » UK News » Crime »

One surv says CCT

SKYNET

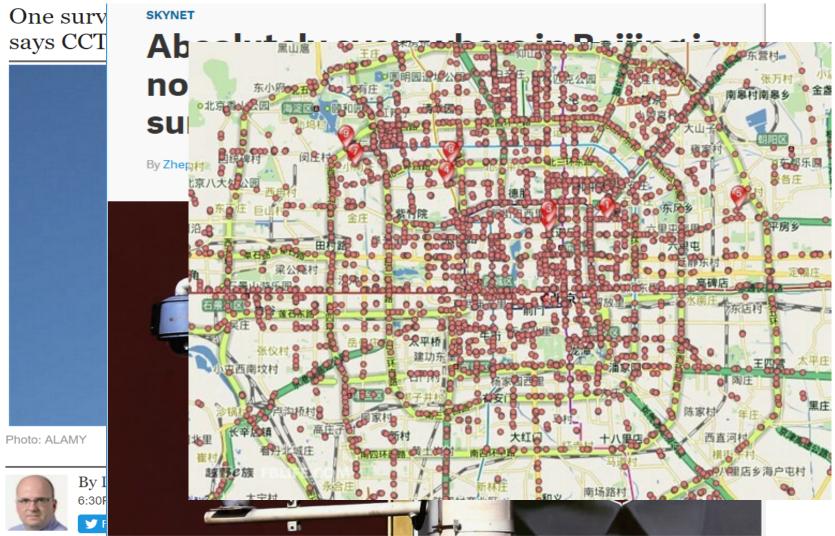
Absolutely everywhere in Beijing is now covered by police video surveillance

By Zheping Huang

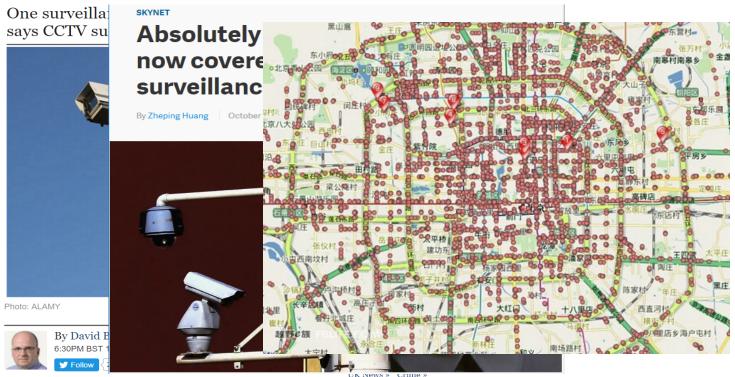
October 07, 2015

Photo: ALAMY

UKINEWS // UTIME //



UKINEWS // UTIME //



1Mbps per camera, 10K cameras? 103 TB/day!

Analytics over city-scale cameras' video requires big-data processing

Video analytics in big-data systems

- Closed solutions: Omnicast, ProVigil, etc.
- Open solutions: MapReduce, Spark, etc.
- Spark example

mport sys mport os mport cv2 mport numpy as np def extract sift features: def extract sift features nested(imgfile imgbytes): try: imgfilename, imgbytes = imgfile_imgbytes nparr = np.fromstring(buffer(imgbytes), np.uint8) img = cv2.imdecode(nparr, 0) Define application logic extractor = cv2.SIFT()kp, descriptors = extractor.detectAndCompute(img, None) return [(imgfilename, descriptors)] except Exception, e: logging.exception(e) return [] return extract opency features nested name == " main ": Initialize Spark sc = SparkContext(appName="sift extractor") sqlContext = SQLContext(sc) trv: User specifies input, image seqfile path = sys.argv[1] feature_parquet_path = sys.argv[2] partitions = int(sys.argv[3]) parallelism etc. except: print("Usage: spark-submit sift extraction.py ' < image_input_path > < feature_output_path > < partitions > ") images = sc.sequenceFile(image seqfile path, minSplits=partitions) features = images.flatMap(extract_sift_features) features = features.filter(lambda x: x[1] != None) **Declares** pipeline features = features.map(lambda x: (Row(fileName=x[0], features=x[1].tolist())) featuresSchema = sqlContext.createDataFrame(features) featuresSchema.registerTempTable("images") featuresSchema.write.parquet(feature parquet path)

import logging mport io

Optimizing vision programs is a manual process convolving systems and application details.

Our goal

Make processing video feeds from many cameras easy and efficient

- Auto-scaling and optimization of queries
- Vision engineers need not worry about //ism etc.
- End-users simply declare queries

Optasia: Design

Leverage relational QO for vision queries

- 1. Vision tasks \Rightarrow declarative dataflow
- 2. Query optimization over UDOs
- 3. Enhancing parallelism (eg chunk-level)

Wrapping vision modules as relational UDOs

Operator name	Relational analog
Extractor, Processor	Select and/or Project
Reducer	GroupBy and/or Aggregate
Combiner	Join

Extractors ingest data

 \$rawdata ← EXTRACT CameralD :int, FrameID :int, Frame :binary

 FROM @"/videos/*.avi" USING VideoExtractor();

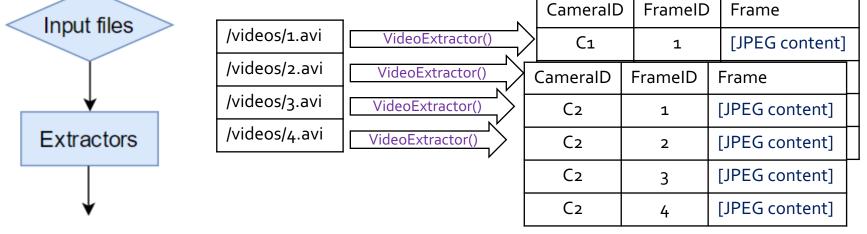
 files

 /videos/1.avi

 VideoExtractor()

 CameralD

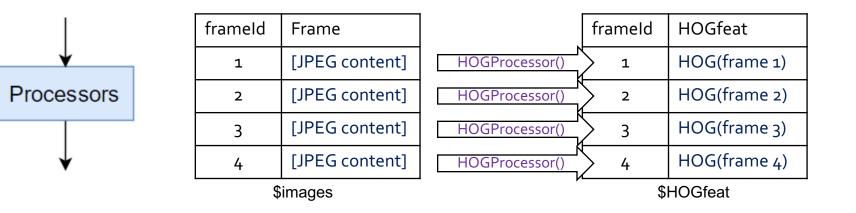
 FrameID



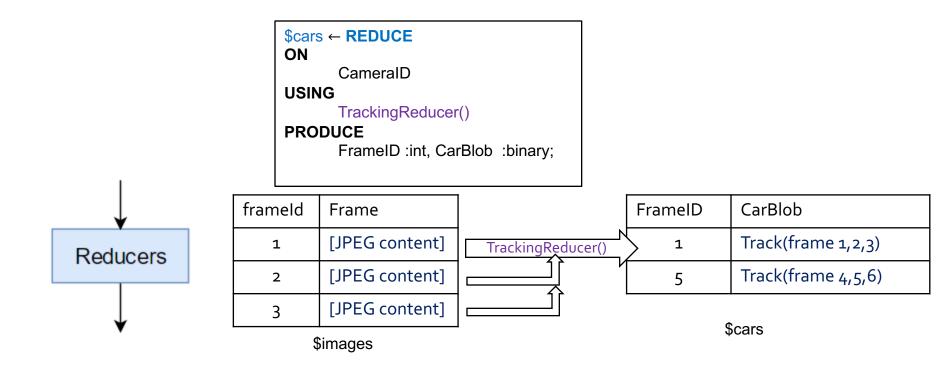
\$rawdata

Processors are row manipulators

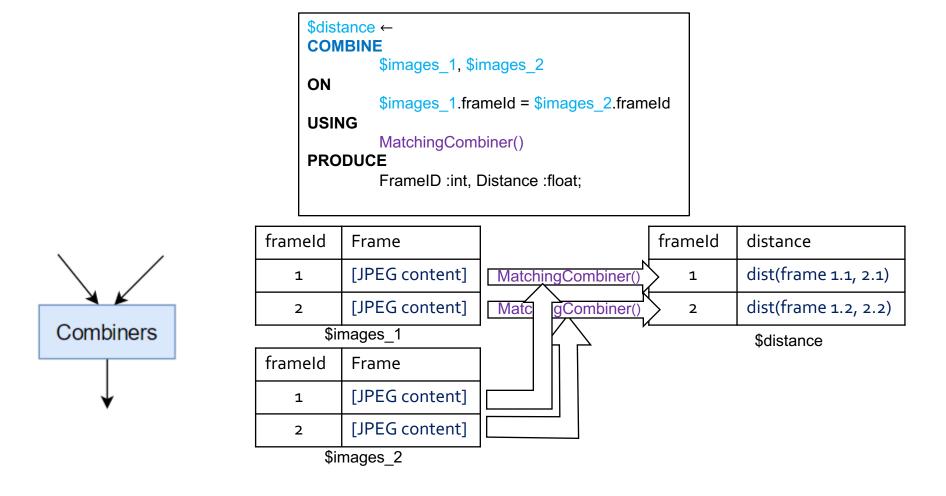
\$Ip ← PROCESS \$images
USING
HOGFeatureProcessor()
PRODUCE
CameralD, FrameID, HOGFeatures;



Reducers operate over groups of rows

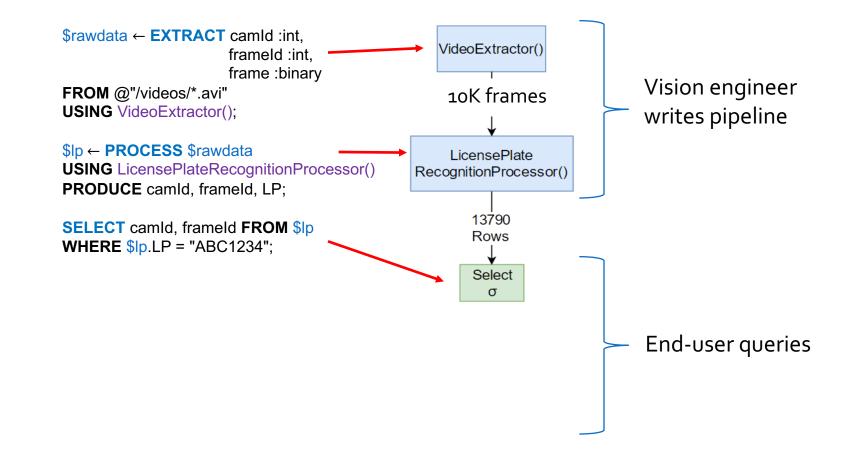


Combiners join two or more rowsets



Pipelines (and queries) are declarative compositions

Example: License Plate Recognition



Query optimization

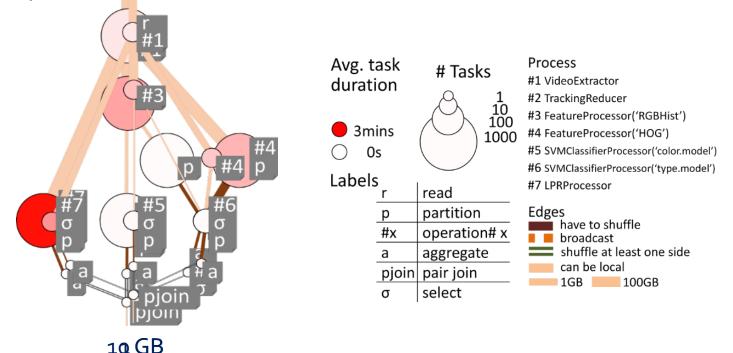
Cascades-style cost-based query optimizer

- Transformation rules generate alternatives, e.g., predicate push-down $\epsilon_1 \rightarrow S \rightarrow Filter \rightarrow \epsilon_2 \implies \epsilon_1 \rightarrow Filter \rightarrow S \rightarrow \epsilon_2$
- UDOs annotated with cost etc.

Query optimization

Cascades-style cost-based query optimizer

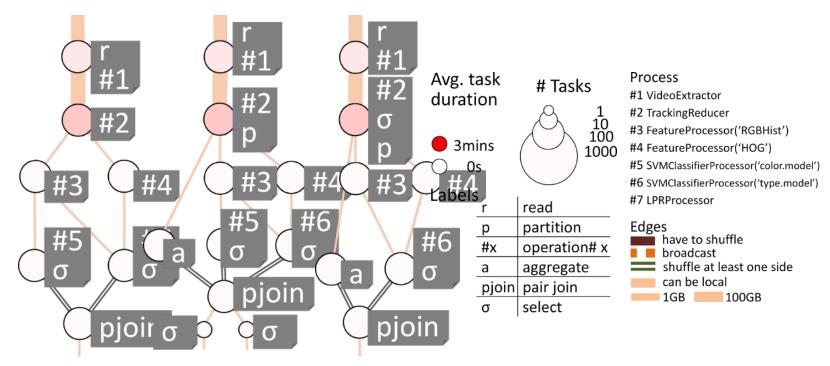
- Transformation rules generate alternatives, e.g., predicate push-down $\varepsilon_1 \rightarrow S \rightarrow Filter \rightarrow \varepsilon_2 \implies \varepsilon_1 \rightarrow Filter \rightarrow S \rightarrow \varepsilon_2$
- UDOs annotated with cost etc.
- Auto parallelization, 1 GB vs. 100 GB:



Query optimization (contd.)

Query de-duplication

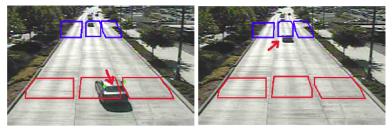
Merge common modules across pipelines and queries.



Amber alert Combined query Traffic violation

Chunk-level parallelism

Contextual analysis is limited to camera-level parallelism

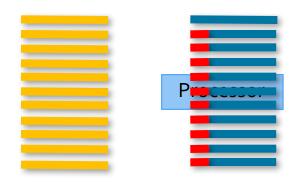


- Idea: context of video processing is bounded in time
- Partition into overlapping chunks

Chunk-level parallelism

Contextual analysis is limited to camera-level parallelism

- Idea: context of video processing is bounded in time
- Partition into overlapping chunks



System

- Implemented state-of-art vision modules as dataflow operators
- 2. Built vision pipelines, using above modules, for
 - License plate recognition
 - Vehicle color/type recognition
 - Traffic flow mapping
 - Object re-identification
- 3. Query optimization extends SCOPE

Module Functionality	Operator Category	Specifics
Feature Extraction	Processor	RGB Histogram, HOG, PyramidSILTPHist PyramidHSVHist
Classifier/regressor	Processor	Linear SVM, Random Forest
Classifier/regressor	Combiner	XQDA for Re-ID
Keypoint Extraction	Processor	Shi-Tomasi, SIFT
Tracker	Reducer	KLT, CamShift
Segmentation	Processor	MOG, Binarization

Summarizing Design

Leverage relational QO for vision queries

- 1. Vision tasks \Rightarrow declarative dataflow
- 2. Query optimization over UDOs
- 3. Enhancing parallelism (eg chunk-level)

Evaluation

Sample end-user queries

Sample end-user queries

Example query: Amber alert ("red honda civic with license AB*92*")

SELECT	
	CameraID,
	FrameID,
	<pre>\$Licenses.conf * \$VehicleType.conf * \$VehicleColor.conf AS Confidence</pre>
FROM	<pre>\$Licenses, \$VehicleType, \$VehicleColor</pre>
ON	<pre>\$Licenses.{Camerald, FrameId}=\$VehicleType.{Camerald, FrameId} &</pre>
	<pre>\$Licenses.{Camerald, FrameId}=\$VehicleColor.{Camerald, FrameId}</pre>
WHERE	
	<pre>\$Licenses.plate LIKE </pre> & \$VehicleType.type= <pre>% \$VehicleColor.color=</pre> ;

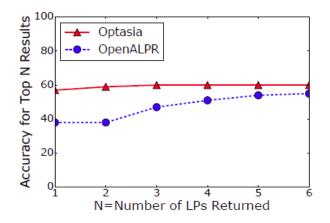
• Other examples in paper and code release

Evaluation

- Sample vision queries
- Benchmarking vision pipelines

Benchmarking vision pipelines

License plate recognition:



Vehicle counting

	-	-	-	-		rate(fps)
Optasia						
Baseline	0.46	0.40	0.31	0.58	0.44	42

Vehicle type & color recognition:

		Sedan		Truck	Van
Optasia Baseline	1.00	0.92	0.34	0.70	0.65
Baseline	0.01	0.67	0.17	0.05	0.10

Evaluation

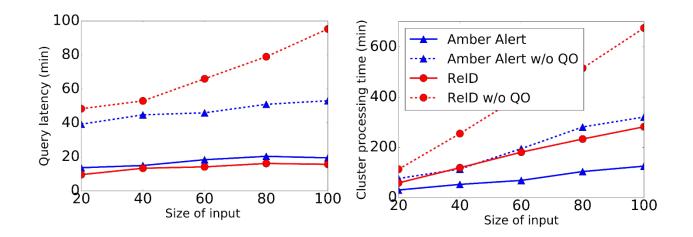
- Sample vision queries
- Benchmarking vision pipelines
- Benchmarking end-to-end system

Benchmarking Optasia

Data: 100GB of traffic surveillance videos.

Queries

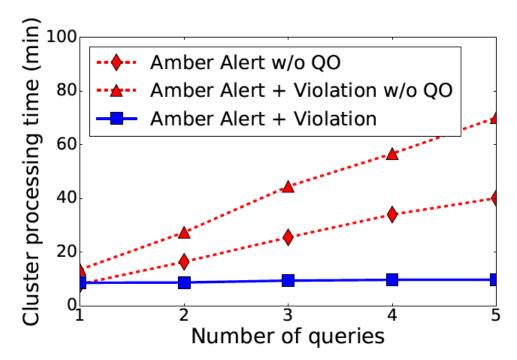
- Amber alert retrieves vehicles given color (red, etc.), type (SUV, etc.), and license plate number
- **Re-ID** matches and tracks certain vehicles across two cameras.



Faster query completion and lower usage of cluster resources

Benchmarking Optasia

De-duplication



Cluster use remains unchanged due to effective de-duplication.

Benchmarking Optasia

Chunk-level parallelism

# of	Query latency	Cluster Processing
chunks		Time
1	16.1	20.2
3	7.6	23.4
8	5.2	24.2
10	5.4	25.4

Chunking increases high degree of parallelism (but overheads catch up)

Conclusion

- Video analytics in big-data systems is challenging
- Optasia: a user-friendly & efficient system
 - Leverages relational QO for vision queries
 - Relational wrappers for vision modules
 - Query optimization to de-dup, //ization, etc.
 - Enhanced parallelism (eg chunk-level)
- Evaluation shows gains in scalability and accuracy

Code and demo at http://yao.lu/optasia