
A Relational Platform for Efficient
Large-Scale Video Analytics

Yao Lu, Aakanksha Chowdhery, Srikanth Kandula

Cameras are ubiquitous; video analysis is a
big-data problem

Cameras are ubiquitous; video analysis is a
big-data problem

Cameras are ubiquitous; video analysis is a
big-data problem

Cameras are ubiquitous; video analysis is a
big-data problem

1Mbps per camera, 10K cameras?
103 TB/day!

Analytics over city-scale cameras’ video requires
big-data processing

Video analytics in big-data systems
§ Closed solutions: Omnicast, ProVigil, etc.

§ Open solutions: MapReduce, Spark, etc.

§ Spark example
Define application logic

User specifies input,
parallelism etc.

Initialize Spark

Declares pipeline

Optimizing vision programs is a manual process
convolving systems and application details.

Our goal

Make processing video feeds from many cameras

easy and efficient

§ Auto-scaling and optimization of queries
§ Vision engineers need not worry about //ism etc.
§ End-users simply declare queries

Optasia: Design

Leverage relational QO for vision queries

1. Vision tasks Þ declarative dataflow

2. Query optimization over UDOs

3. Enhancing parallelism (eg chunk-level)

Wrapping vision modules as
relational UDOs

Operator name Relational analog

Extractor, Processor Select and/or Project

Reducer GroupBy and/or Aggregate

Combiner Join

Extractors ingest data

$rawdata ← EXTRACT CameraID :int,
FrameID :int,
Frame :binary

FROM @"/videos/*.avi"
USING VideoExtractor();

CameraID FrameID Frame

C1 1 [JPEG content]

C1 2 [JPEG content]

C1 3 [JPEG content]

C1 4 [JPEG content]

/videos/1.avi

/videos/2.avi

/videos/3.avi

/videos/4.avi

VideoExtractor()

VideoExtractor()

VideoExtractor()

VideoExtractor()

$rawdata

CameraID FrameID Frame

C2 1 [JPEG content]

C2 2 [JPEG content]

C2 3 [JPEG content]

C2 4 [JPEG content]

Processors are row manipulators

$lp	← PROCESS $images
USING

HOGFeatureProcessor()
PRODUCE

CameraID, FrameID, HOGFeatures;

frameId HOGfeat

1 HOG(frame 1)

2 HOG(frame 2)

3 HOG(frame 3)

4 HOG(frame 4)

HOGProcessor()

HOGProcessor()

HOGProcessor()

HOGProcessor()

$HOGfeat

frameId Frame

1 [JPEG content]

2 [JPEG content]

3 [JPEG content]

4 [JPEG content]

$images

Reducers operate over groups of rows

$cars ← REDUCE
ON

CameraID
USING

TrackingReducer()
PRODUCE

FrameID :int, CarBlob :binary;

FrameID CarBlob

1 Track(frame 1,2,3)

5 Track(frame 4,5,6)

$cars

frameId Frame

1 [JPEG content]

2 [JPEG content]

3 [JPEG content]

$images

TrackingReducer()

Combiners join two or more rowsets

$distance ←
COMBINE

$images_1, $images_2
ON

$images_1.frameId = $images_2.frameId
USING

MatchingCombiner()
PRODUCE

FrameID :int, Distance :float;

frameId distance

1 dist(frame 1.1, 2.1)

2 dist(frame 1.2, 2.2)

$distance

frameId Frame

1 [JPEG content]

2 [JPEG content]
$images_1

MatchingCombiner()

frameId Frame

1 [JPEG content]

2 [JPEG content]

$images_2

MatchingCombiner()

Pipelines (and queries) are declarative compositions

$rawdata ← EXTRACT camId :int,
frameId :int,
frame :binary

FROM @"/videos/*.avi"
USING VideoExtractor();

$lp	← PROCESS $rawdata
USING LicensePlateRecognitionProcessor()
PRODUCE camId, frameId, LP;

SELECT camId, frameId FROM $lp
WHERE $lp.LP = "ABC1234";

License Plate RecognitionExample:

Vision engineer
writes pipeline

End-user queries

10K frames

Query optimization
Cascades-style cost-based query optimizer

§ Transformation rules generate alternatives, e.g., predicate push-down
𝜀$→𝑆→𝐹𝑖𝑙𝑡𝑒𝑟→𝜀, ⇒ 𝜀$→𝐹𝑖𝑙𝑡𝑒𝑟→𝑆→𝜀,

§ UDOs annotated with cost etc.

Query optimization
Cascades-style cost-based query optimizer

§ Transformation rules generate alternatives, e.g., predicate push-down
𝜀$→𝑆→𝐹𝑖𝑙𝑡𝑒𝑟→𝜀, ⇒ 𝜀$→𝐹𝑖𝑙𝑡𝑒𝑟→𝑆→𝜀,

§ UDOs annotated with cost etc.

§ Auto parallelization, 1 GB vs. 100 GB:

1 GB10 GB

Query optimization (contd.)
§ Query de-duplication

Merge common modules across pipelines and queries.

Amber alert Traffic violationCombined query

Chunk-level parallelism

§ Contextual analysis is limited to camera-level parallelism

§ Idea: context of video processing is bounded in time

§ Partition into overlapping chunks

Chunk-level parallelism

§ Contextual analysis is limited to camera-level parallelism

§ Idea: context of video processing is bounded in time

§ Partition into overlapping chunks

Processor

System
1. Implemented state-of-art vision

modules as dataflow operators

2. Built vision pipelines, using above
modules, for
§ License plate recognition
§ Vehicle color/type recognition
§ Traffic flow mapping
§ Object re-identification

3. Query optimization extends SCOPE

Module
Functionality

Operator
Category

Specifics

Feature Extraction Processor RGB Histogram,
HOG,
PyramidSILTPHist
PyramidHSVHist

Classifier/regressor Processor Linear SVM,
Random Forest

Classifier/regressor Combiner XQDA for Re-ID

Keypoint Extraction Processor Shi-Tomasi,
SIFT

Tracker Reducer KLT,
CamShift

Segmentation Processor MOG,
Binarization

Summarizing Design

Leverage relational QO for vision queries

1. Vision tasks Þ declarative dataflow

2. Query optimization over UDOs

3. Enhancing parallelism (eg chunk-level)

Evaluation

§ Sample end-user queries

Sample end-user queries
§ Example query: Amber alert (“red honda civic with license AB*92*”)

§ Other examples in paper and code release

SELECT
CameraID,
FrameID,
$Licenses.conf * $VehicleType.conf * $VehicleColor.conf AS Confidence

FROM $Licenses, $VehicleType, $VehicleColor
ON $Licenses.{CameraId, FrameId}=$VehicleType.{CameraId, FrameId} &

$Licenses.{CameraId, FrameId}=$VehicleColor.{CameraId, FrameId}
WHERE

$Licenses.plate LIKE l & $VehicleType.type=v & $VehicleColor.color=c;

Evaluation

§ Sample vision queries

§ Benchmarking vision pipelines

Benchmarking vision pipelines
§ License plate recognition:

§ Vehicle type & color recognition:

§ Vehicle counting

Evaluation

§ Sample vision queries

§ Benchmarking vision pipelines

§ Benchmarking end-to-end system

Benchmarking Optasia
§ Data: 100GB of traffic surveillance videos.

§ Queries
§ Amber alert retrieves vehicles given color (red, etc.), type (SUV, etc.), and license plate number
§ Re-ID matches and tracks certain vehicles across two cameras.

Faster query completion and lower usage of cluster resources

Benchmarking Optasia
§ De-duplication

Cluster use remains unchanged due to effective de-duplication.

Benchmarking Optasia
§ Chunk-level parallelism

Chunking increases high degree of parallelism
(but overheads catch up)

Conclusion
§ Video analytics in big-data systems is challenging
§ Optasia: a user-friendly & efficient system

§ Leverages relational QO for vision queries
§ Relational wrappers for vision modules
§ Query optimization to de-dup, //ization, etc.
§ Enhanced parallelism (eg chunk-level)

§ Evaluation shows gains in scalability and accuracy

Code and demo at http://yao.lu/optasia

