VisFlow: A Declarative Platform for
Parallelizing Large-Scale Vision Programs

Yao Lu'-2, Aakanksha Chowdhery'-?, Srikanth Kandula'

Microsoft Research!, University of Washington?, Princeton University?

luyao@cs.washington.edu'

Motivation

Previous big-data platforms for vision programs, such as MapReduce or Spark, are
suboptimal, due to the following issues:

Performance

Manual system configuration (parallelism, scheduling, data storage, etc.) is
tedious and time-consuming.

Optimizing vision programs is ad-hoc and cannot be automated.

Ease-of-use

Special programming expertise is required (languages, APls, etc.).

Popular libraries such as OpenCV and Caffe are not naturally deployed on
the cluster.

System Design

The key attributes of VisFlow are listed below.

A declarative dataflow engine.
The vision programs are declared as independent algorithmic modules. Data goes
through the modules like a flow.

SQL-like programming interface.
An extended SQL interface is leveraged that is familiar to both industrial and
research communities.

Employment of a powerful query optimizer.

We apply a cost-based query optimizer that (1) chooses an execute plan with the
least cost based on pre-defined transformation rules, (2) parallelizes the vision
modules according to input size, and (3) de-duplicate the vision modules shared by
different user queries.

Data storage.
VisFlow utilizes a distributed file system to store large-scale off-line datasets. Online
data can be imported using a streaming extractor.

Fault tolerance
is automatically handled in VisFlow. Usually the usability of the system is above
99.9%.

Code base.
We implemented 5K lines in C++ and OpenCV for various vision modules, 700 lines
in C# for SCOPE wrappers. Each user query has a few tens of lines.

Public access.
Our system is built upon the SCOPE [2] dataflow engine on Microsoft's Cosmos
clusters. A public version of Cosmos is the Azure Data Lake (ADL) [3].

For more details please refer to our technical report [1].

Benchmarks
100 p = ' .4
______ € 600! | —*— Amber Alert o
= 80 o v --&-- Amber Alert w/o QO | .-~
e T £)
= T = —e— RelD
g; 60| o ‘ 2400} |--e-- RelD w/o QO
8 . ----------------------------------- A-----""ct & I .
O 404 - A § -
- £ 200!
q | | 5 i .
0 40 60 80 100 0 40 60 80 100
Size of input Size of input

Data: 100Gb of traffic surveillance videos.

Tasks:

(1) Amber alert query retrieves a vehicle with certain color (red, etc.), type (SUV, etc.),

and license plate number,

(2) Re-ID query matches and tracks one category of vehicles across two cameras.

Results are shown above. We report two different metrics. VisFlow achieves roughly

3x speedup for different input sizes, and near constant user time.

Microsoft:

Research

PRINCETON
- UNIVERSITY

An Extended SQL Interface

Example query to retrieve a vehicle:
USING VisFlow;

$rawdata <« EXTRACT camld :int, frameld :int, frame :binary
FROM @"/videos/*.avi" USING VideoExtractor();

$bs « REDUCE $rawdata USING BackgroundSubtractionReducer(0.05)
PRODUCE camld, frameld, frameBlob;

$lp <« PROCESS $bs USING LicensePlateRecognitionProcessor()
PRODUCE camld, frameld, LP;

$hogfeat —« PROCESS $bs USING HOGFeatureProcessor()
PRODUCE camld, frameld, vFeat;

$VehType « PROCESS $hogfeat USING LinearSVMProcessor(“veh-type.model”)
PRODUCE camlID, framelD, label, conf;

SELECT camid, frameld FROM $lp, $VehType
ON $lp.{camld,frameld}=$VehType.{camId,frameld}
WHERE $1p.LP = "ABC1234" AND $VehType.label = "SUV";

Remark:

Extractors ingest data (e.g., image, video, text) from outside of the system.

Processors are row manipulators, e.g., feature extraction and classification.
Reducers are operations over groups of rows, e.g., background subtraction.
Combiners join two or more row sets, e.g., object/keypoint matching.

The above language interface generates the following user roles:

Vision engineers are responsible for the individual vision modules written in
popular libraries, e.g, OpenCV and Caffe.

System engineers focus on robust and efficient infrastructures, which save the
other roles from tedious performance adjustment.

End users such as application engineers and data scientists, only need to take
care of the logic described in the end query.

Query Optimizer for Vision Programs

We apply a cost-based query optimizer to accelerate the query execution.

A variety of transformation rules are applied to replace the query sub-expression.
E.g., Predicate push-down:
€ = S - Filter - €, = €1 — Filter - S - ¢,

Auto parallelization, 1 Gb vs. 100 Gb:

Avg. task HTocke
duration . CE @
10

@ 3mins 11000%

() Os

Labels
r read
P partition
#x | operation# x
a aggregate
pjoin| pair join
o select

Query deduplication:

Process

#1 VideoExtractor

#2 TrackingReducer

#3 FeatureProcessor(‘RGBHist’)

#4 FeatureProcessor(‘HOG’)

#5 SVMClassifierProcessor(‘color.model’)
H#6 SVMClassifierProcessor(‘type.model’)
#7 LPRProcessor

Edges

B have to shuffle

¥ W broadcast

== Shuffle at least one side
can be local

1GB 100GB

References

[1TY.Lu,A. Chowdhery, S. Kandula.VisFlow: A Relational Platform for Efficient Large-Scale Video Analytics. MSR Report 2016-28.
[2] R. Chaiken et al. SCOPE: Easy and Efficient Parallel Processing of Massive Datasets. InVLDB, 08’
[3] Azure Data Lake. http://bit.ly/| Mig8RP

