
QU ICK S TA RT (con t .)

How to change the template color theme
You can easily change the color theme of your poster by going to the DESIGN
menu, click on COLORS, and choose the color theme of your choice. You can also
create your own color theme.

You can also manually change the color of your background by going to VIEW >
SLIDE MASTER. After you finish working on the master be sure to go to VIEW >
NORMAL to continue working on your poster.

How to add Text
The template comes with a number of pre-formatted
placeholders for headers and text blocks. You can add
more blocks by copying and pasting the existing ones or
by adding a text box from the HOME menu.

Text size
Adjust the size of your text based on how much content you have to present.
The default template text offers a good starting point. Follow the conference
requirements.

How to add Tables
To add a table from scratch go to the INSERT menu and
click on TABLE. A drop-down box will help you select rows and
columns. You can also copy and a paste a table from Word or
another PowerPoint document. A pasted table may need to be re-
formatted by RIGHT-CLICK > FORMAT SHAPE, TEXT BOX, Margins.

Graphs / Charts
You can simply copy and paste charts and graphs from Excel or Word. Some
reformatting may be required depending on how the original document has been
created.

How to change the column configuration
RIGHT-CLICK on the poster background and select LAYOUT to see the column
options available for this template. The poster columns can also be customized on
the Master. VIEW > MASTER.

How to remove the info bars
If you are working in PowerPoint for Windows and have finished your poster, save
as PDF and the bars will not be included. You can also delete them by going to
VIEW > MASTER. On the Mac adjust the Page-Setup to match the Page-Setup in
PowerPoint before you create a PDF. You can also delete them from the Slide
Master.

Save your work
Save your template as a PowerPoint document. For printing, save as PowerPoint or
“Print-quality” PDF.

Student discounts are available on our Facebook page.
Go to PosterPresentations.com and click on the FB icon.

© 2015 PosterPresentations.com
2117 Fourth Street , Unit C
Berkeley CA 94710
posterpresenter@gmail.comRESEARCH POSTER PRESENTATION DESIGN © 2015

www.PosterPresentations.com

Previous big-data platforms for vision programs, such as MapReduce or Spark, are
suboptimal, due to the following issues:

• Performance

• Manual system configuration (parallelism, scheduling, data storage, etc.) is
tedious and time-consuming.

• Optimizing vision programs is ad-hoc and cannot be automated.

• Ease-of-use

• Special programming expertise is required (languages, APIs, etc.).

• Popular libraries such as OpenCV and Caffe are not naturally deployed on
the cluster.

Motivation An Extended SQL Interface

Query Optimizer for Vision Programs

References

VisFlow: A Declarative Platform for
Parallelizing Large-Scale Vision Programs
Yao Lu1,2, Aakanksha Chowdhery1,3, Srikanth Kandula1

Microsoft Research1, University of Washington2, Princeton University3

luyao@cs.washington.edu1

[1] Y. Lu, A. Chowdhery, S. Kandula. VisFlow: A Relational Platform for Efficient Large-Scale Video Analytics. MSR Report 2016-28.
[2] R. Chaiken et al. SCOPE: Easy and Efficient Parallel Processing of Massive Datasets. In VLDB, 08’
[3] Azure Data Lake. http://bit.ly/1Miq8RP

Example query to retrieve a vehicle:
USING VisFlow;

$rawdata← EXTRACT camId	:int,	frameId	:int,	frame	:binary
FROM @"/videos/*.avi"	USING VideoExtractor();

$bs ←	 REDUCE $rawdata USING BackgroundSubtractionReducer(0.05)
PRODUCE camId,	frameId,	frameBlob;

$lp	← PROCESS $bs USING LicensePlateRecognitionProcessor()
PRODUCE camId,	frameId,	LP;

$hogfeat ←	 PROCESS $bs USING HOGFeatureProcessor()
PRODUCE camId,	frameId,	vFeat;

$VehType ←	 PROCESS $hogfeat USING LinearSVMProcessor(“veh-type.model”)
PRODUCE camID,	frameID,	label,	conf;

SELECT camId,	frameId	FROM $lp, $VehType
ON $lp.{camId,frameId}=$VehType.{camId,frameId}
WHERE $lp.LP	=	"ABC1234" AND $VehType.label	=	"SUV";

Remark:
• Extractors ingest data (e.g., image, video, text) from outside of the system.
• Processors are row manipulators, e.g., feature extraction and classification.
• Reducers are operations over groups of rows, e.g., background subtraction.
• Combiners join two or more row sets, e.g., object/keypoint matching.

The above language interface generates the following user roles:
• Vision engineers are responsible for the individual vision modules written in

popular libraries, e.g, OpenCV and Caffe.
• System engineers focus on robust and efficient infrastructures, which save the

other roles from tedious performance adjustment.
• End users such as application engineers and data scientists, only need to take

care of the logic described in the end query.

We apply a cost-based query optimizer to accelerate the query execution.
• A variety of transformation rules are applied to replace the query sub-expression.

E.g., Predicate push-down:
	𝜖$ → 𝑆 → 𝐹𝑖𝑙𝑡𝑒𝑟 → 𝜖- ⇒ 𝜖$ → 𝐹𝑖𝑙𝑡𝑒𝑟 → 𝑆 → 𝜖-

• Auto parallelization, 1 Gb vs. 100 Gb:

• Query deduplication:

System Design

Benchmarks

The key attributes of VisFlow are listed below.

• A declarative dataflow engine.
The vision programs are declared as independent algorithmic modules. Data goes
through the modules like a flow.

• SQL-like programming interface.
An extended SQL interface is leveraged that is familiar to both industrial and
research communities.

• Employment of a powerful query optimizer.
We apply a cost-based query optimizer that (1) chooses an execute plan with the
least cost based on pre-defined transformation rules, (2) parallelizes the vision
modules according to input size, and (3) de-duplicate the vision modules shared by
different user queries.

• Data storage.
VisFlow utilizes a distributed file system to store large-scale off-line datasets. Online
data can be imported using a streaming extractor.

• Fault tolerance
is automatically handled in VisFlow. Usually the usability of the system is above
99.9%.

• Code base.
We implemented 5K lines in C++ and OpenCV for various vision modules, 700 lines
in C# for SCOPE wrappers. Each user query has a few tens of lines.

• Public access.
Our system is built upon the SCOPE [2] dataflow engine on Microsoft’s Cosmos
clusters. A public version of Cosmos is the Azure Data Lake (ADL) [3].

For more details please refer to our technical report [1].

Data: 100Gb of traffic surveillance videos.

Tasks:
(1) Amber alert query retrieves a vehicle with certain color (red, etc.), type (SUV, etc.),
and license plate number,
(2) Re-ID query matches and tracks one category of vehicles across two cameras.

Results are shown above. We report two different metrics. VisFlow achieves roughly
3x speedup for different input sizes, and near constant user time.

